
NOTATION 

Ik, Je,k, spectral radiative intensity of the medium and of a perfect blackbody; ~ = 
cos 8; 8, angle between the direction of the y axis, normal to the surface, and the ambient 
direction of propagation of the radiation; kk, volume spectral absorption coefficient; ( )y, 
differentiation with respect to y; T, gas temperature; s, Stefan--Boltzmann constant; ~, wave- 
length of the radiation; R, radius of blunting of the body; p, pressure in the shock layer; 
H, stagnation enthalpy; qR' integral radiative heat flux to the surface; qc, convective heat 
flux; h, shock layer thickness. 

i. 

2o 

3. 

, 

5. 

LITERATURE CITED 

N. A. Anfimov and V. P. Shari, "Solution of the system of equations of motion of a selec- 
tively radiating gas in a shock layer," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 
18-25 (1968). 
M. P. Sherman, "Moment methods in radiative transfer problems," JQSRT, ~, 89-109 (1967). 
V. V. Gorskii and S. T. Surzhikov, "Use of the quasilinearization method to solve the 
equations of the boundary layer with strong blowing," Izv. Vyssh. Uchebn. Zaved., 
Mashinostr., No. ii, 179-181 (1978). 
A. N. Rumynskii and V. P. Churkin, "Hypersonic flow of a viscous radiating gas over blunt 
bodies," Zh. Vychisl. Mat. Mat. Fiz., 14, No. 6, 1553-1570 (1974). 
0. N. Suslov, '~ulticomponent diffusion and heat transfer in flow of an ionized gas in 
chemical equilibrium over a body," Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 53-59 (1972). 

SPATIAL NONSTATIONARY HEAT-CONDUCTION PROBLEM FOR A PRISM WITH 

A COORDINATE-DEPENDENT HEAT-TRAnSFER COEFFICIENT 

Yu. M. Kolyano and E. G. Grits'ko UDC 536.12-539.376 

We present an efficient method for the determination of three-dimensional non- 
steady-state fields of bodies of simple shapes, when the heat-transfer coefficient 
from their surface changes locally. 

We consider an isotropic semiinfinite rectangular prism 0 ~ z _-~/_~, 0 ~-~x ~xo, 0 ~-~ y_ 
yo. Through the face z = 0 of the prism, convective heat exchange takes place with the in- 
homogeneous external medium. The temperature of the external medium, in contact with an 
arbitrary region F of the z = 0 surface is equal to tm:. The remaining part of the surface 
z = 0 is in contact with an external medium of temperature t m. The heat-transfer coefficient 
in the region F is denoted by 5,, and from the surface z = 0 outside F by 5, with ~i > 5. The 
surfaces x = 0, x = xo, y = 0, y -- yo are either thermally insulated or are kept at tempera- 
ture t m. In dimensionless variables, the boundary-value problem for the determination of the 
non-steady-state temperature field in the semiinfinite rectangular prism can be written as 
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where 

sine, 
then obtain 

0 ~ (t -- t m)/(tmt - -  tin); X = xX/Xo; Y = .r~y/Xo; Z -- ;tz/x; b = ayo/Xo; Fo = 
--a~*a/x2o; Bii : a#o  ()~n)-i; Bi -- ax o ()vaz)-i; 

%(X, Y ) =  { 1 for X, YEF;  
0 for X, Y-E r- 

We take the Laplace transform of (I) and (3) with respect to Fo and finite, cosine or 
Fourier transforms [i] with respect to the X and Y coordinates. Using (2) and (4), we 

d() BiO -- 
d Z  

(5) 
dZ z - -  

Bi, ~ (x, y) -1- (Bit - -  Bi) ~J~ 6q)e (nX) q)~ (~Y) d X d Y  
S ~p 

for Z = 0 ,  0/z.~ = 0 ,  (6) 

Here, 

O =  f f OffP~(nX)fP~(;r)dXdg; ~ ~- k~/b; v = V'n~+-~ 2 +s ;  0 ~- O• 
0 0 0 

•  q)o(~) ~- cos$; gP~(~) = sin ~; ~(x, y) = f ;  q)~ (nX)•  
I" 

• cI) u (~Y) dXdY .  

A n a l o g o u s l y  t o  [2 ,  3] we r e p l a c e  t h e  L a p l a c e  t r a n s f o r m  o f  t h e  t e m p e r a t u r e  f i e l d  i n  t h e  
integrand in (6) by its integral characteristic ~ in the region r, i.e., 

where 

(7) 

1 ; ;  O*dXdY. (8) 

P 

Here 0* is the temperature field in the semiinflnlte rectangular prism obtained by substitu- 
tion (7), and P is the area of the region r in units x~/~ a. 

The solution of the boundary-value problem (5) and (6), taking into account (7), is 

O* = [Bids--  (Bi~--Bi)~l ~ ( Z ) ~ ( X ,  r) ,  ( 9 )  

whe re  r (Z) = exp( - -vZ) (~  + Bi)  - x .  

Taking the inverse sine or cosine Fourier transform of (9) and substituting the result 
into (8), we find 

~ _ 1 SoBiiP -i (10)  
s 1 + S o ( B i l - - B i ) P  -i 

Here, 

n = l  h ~ l l  

4(rib) "l for n k r  

e(n,  k ) :  2(xb) -1 for n k = O  and n + k = ~ 0 ,  
(~b) -~ for k -4-n=O. 

Substituting (i0) into (9) and taking inverse Fourier and Laplace transforms of the 
resulting (9), we obtain 

112 



~§ 

0"--  2r~iBii ,f f(s) exp(sFO)s ds, (ii) 

6-- i ,  =o 

where 

f(s)= ~ ~.~ e(n, k)~iZ)x(X, V)O~(nX)O~(~g) [ lq -Se(Bi , - -B i ) ] - t  (12) 
n=l h=lx 

To reduce the difficult contour integral (ii) to a Riemann integral, we use the following 
result. If the complex numbers v n satisfy for all n = i, 2, 3, ..., the condition 

a (13) 
larg v~l --~ ~ -  , 

then the following relation holds: 

oo 

arg(y  (14) 

n=0 

provided the sum exists. 

If we consider expression (12) for s in the region larg sI~ ~ and noting the above re- 
sult one can conclude that f(s) has no poles in this region. The contour of integration in 
the  contour integral (ii) can therefore be taken along the two sides of a cut along the real 
negative semiaxis, and round the point s = 0. 

Transforming the obtained integral, we obtain 

O*= Bi, I[(O) + 1 i exp(--~V~ (L~a+L~)L~ +L~ L~)L~d j 
--~ n (1 § Loa + L~)2+ L~. dq , (15) 

0 

where 

L i d  

L i t  t ~- 
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E( V~ ) g( F~l - - ~ )  

n~t  h=P. 
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Lo =c i E 
n=l h=~t 

e(r e ( r  
Lo~ = C E 

n=l 

2 - i  M (n, k, X, Y) (Bi cos Zv= -}- v. sin Zv.) (Bi z q- v.) ; 

v . ) ;  M(n, k, X, Y)(BisinZ% + vu cosZvu)(Bi a-l- 2 -I 

M(n, k, X, Y) exp(-- 'vdZ ) (~ + Bi)-l; 

M, (n, k) (Bi ~ -1- v~)-i; 

Z M, (n, k) vu (Bi z + v~)-'; 
h = t t  

Lo = C ~ ~ Mi (n, k)(Vd + Bi)-~; 
n~E x h~Ey 

re= l/ n~ q-~z-- n ; vu = }r~l--n2--~z; E~=E(V--~)q-I; 

Ey=E(/~,l--n2)+ I; M(n, k, X, Y)=8(n, k)x(X, Y)• 

• O~ (nX) r  (r;Y); M, (n, k) = e (n, k) [~ (X, g)?; 

and C = (Bi~ --Bi)P -~, g(~) is the integer part of ~. 

The quantities L:d, Lxu, Lod, Lou should be set equal to zero in the following cases: 
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q/o .... o,2 4~ x 

Fig. 1. Dimensionless temperature field 
8" as a function of the dimensionless co- 
ordinate X for all values of the dimen- 
sionless coordinate Y at Z = 0. 

a) Z = I, p = 0, n~-~l; 

b) Z = O, p = i, n~<~/ba; 

c) I = i, ~ = i, n~<l + ~/b'. 

The solution (15) is meaningful for ~, I = 0, lj and is applicable to the following 
situations: 

a) thermally insulated side surface of the semiinfinite prism (~ + I = 0); 

b) the side surface of the prism is kept at temperature tc (~ = i); 

c) two opposite edges of the side surface of the semiinfinite prism are kept at tempera- 
ture tc, and the other two are insulated (~ + I = i). 

The accuracy of solution (15) can be estimated by using the error functions introduced 
in [4]. 

Calculations carried out according to formulas (15) with the region of the local thermal 
interaction chosen in the form of a rectangle eox~X~e,x, ~oy ~Y ~-~zv, showed that the 
temperature field in the semiinfinite prism when the side surface is thermally insulated, 
reaches its steady-state value considerably slower than when its side surface was kept at 
zero temperature. The values of the steady-state temperature field in the semiinfinite prism 
with thermally insulated side surface, assuming other conditions being identical, considerably 
exceed the values of the temperature field when its side surface is kept at zero temperature. 
Figure 1 shows the functional dependence of the temperature field on the X coordinate in an 
arbitrary cross section Y= const for z = 0, goy = 0, ~,y = b, gox = 0, g~x = 0.3, and Fo = 3, 
I0, 30, - (curves 1-4), and ~ = ~ = 0. 

NOTATION 

t, temperature field; e, dimensionless temperature field; x, y, and z, dimensional co- 
ordinates; X~ Y, and Z, dimensionless cordinates; T, time; ~, thermal conductivity; and a, 
thermal diffuslvity. 

le 
2. 

3. 

4. 

LITERATURE CITED 

I. Sneddon, Fourier Series, Routledge and Kegan (1973). 
Yu. M. Kolyano and E. G. Grits'ko, "Narrow-channel heating of bodies," Fiz. Khlm. Obrab. 
Mater., No. 3, 149-152 (1977). 
Yu. M. Kolyano and E. G. Grlts'ko, in: Nonlinear Theory of Shells and Films [in Russian], 
Kazan (1980), p. 113. 
Yu. M. Kolyano and E. G. Grits'ko, "Application of orthogonal systems of functions to 
the calculation of temperature fields locally heated from the face planes of films," Mat. 
Metody Fiz. Mekh. Polya, No. ii, 100-103 (1980). 

114 


